ACTIVE CONTROL OF COMBUSTION INSTABILITIES IN LOW NO_X GAS TURBINES

Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier and Ben Bellows

Schools of Aerospace and Mechanical Engineering

Georgia Institute of Technology Atlanta, GA 30318

Program Goals

- Investigate mechanisms of combustion instabilities
- Develop and demonstrate adaptive active control system that can rapidly and effectively suppress combustion instabilities
- Disseminate technology to industry

School of Aerospace Engineering

Developed Active Control

School of Aerospace Engineering

Georgia Tech LNGT Simulator

Georgia Tech LNGT Simulator

Adaptive Control of Instabilities

- Methodology:
 - Force the system with a small control signal
 - Correlate system response
 - Apply phase correction to control signal

Georgia Tech

School of Aerospace Engineering

Identification and Control: Lean-premixed Combustor

Georgia Tech

School of Aerospace Engineering

Background Noise Effects on Phase of Pressure Oscillations

 Phase of pressure oscillations changes rapidly as amplitude of oscillations diminishes

School of Aerospace Engineering

Time Delay Effects on Controllability

- Combustor pressure phase changes in response to:
 - Ambient background noise
 - active control
- Time delays in system cause uncertainty in phase of oscillations, reducing controllability

Nonlinear Response of Combustion Process to Perturbations

 Measurements indicate amplitude of heat release oscillations saturates at increased pressure amplitudes

Program Accomplishments

- Demonstrated up to 15 dB reductions in instability amplitude on both a laboratory combustor and a single can of a full scale gas turbine combustor with the developed adaptive active control system
- Improved understanding of factors limiting effectiveness of active control
- Improved understanding of nonlinear processes responsible for saturating instability amplitude

